

- k = number of bits in each data block.
 - There are 2^k possibilities for the *k*-bit data block.
- n = number of bits in each codeword.
 - There are 2^k valid codewords.
 - One for each possible data block.

Choose $M = 2^k$ from 2^n possibilities to be used as codewords.

- Given a list of codewords for a code C, we can determine whether C is linear by
 - Definition: if $\underline{x}^{(1)}$ and $\underline{x}^{(2)} \in \mathcal{C}$, then $\underline{x}^{(1)} \oplus \underline{x}^{(2)} \in \mathcal{C}$

• Shortcut:

- First check that ${\mathcal C}$ must contain <u>0.</u>
- Check the definition but only check the non-zero codewords.
- Codewords can be generated by a **generator matrix**

• $\underline{\mathbf{x}} = \underline{\mathbf{b}}\mathbf{G} = \sum_{i=1}^{k} b_i \underline{\mathbf{g}}^{(i)}$ where $\underline{\mathbf{g}}^{(i)}$ is the *i*th row of \mathbf{G}

Review: Single-parity-check code

- An example of linear block code.
- Use even parity
- $\mathbf{G} = [\mathbf{I}_{k \times k}; \underline{\mathbf{1}}^T]$
- Can <u>detect</u> any odd number of bit error.

$$\mathbf{H} = \begin{bmatrix} y_1 & y_2 & y_3 & y_4 & y_5 & y_6 & y_7 \\ x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ p_1 & d_1 & p_2 & d_2 & p_3 & d_3 & d_4 \\ \end{bmatrix}$$
$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$
$$\mathbf{Parity Check Matrix}$$

Hamming code

Review: Even Parity

- A binary vector (or a collection of 1s and 0s) has **even parity** if and only if the number of 1s in there is even.
 - Suppose we are given the values of all the bits except one bit.
 - We can force the vector to have even parity by setting the value of the remaining bit to be the sum of the other bits.

- The code structure is **built** into each codeword at the encoder (transmitter) via the generator matrix
 - Each codeword is created by $\underline{\mathbf{x}} = \underline{\mathbf{d}}\mathbf{G}$.
- The code structure is **checked** at the decoder (receiver) via the parity check matrix.

• A valid codeword must satisfy $\underline{\mathbf{x}}\mathbf{H}^T = \underline{\mathbf{0}}$.

- The "identity-matrix" columns in ${f G}$ corresponds to positions of the message (data) bits in each codeword.
 - Ex. For this code, codeword $\underline{\mathbf{x}} = [1\ 1\ 0\ 0\ 1\ 1\ 0]$ corresponds to message $\underline{\mathbf{b}} = [1\ 0\ 1\ 0]$.
- The "identity-matrix" columns in ${f H}$ corresponds to positions of the parity (check) bits in each codeword.

Review: Hamming Code Recipe

Here,

- Start with the parity-check matrix
- m rows
 - m = n k
- Columns are all possible <u>nonzero</u> *m*-bit vectors
 - $n = 2^m 1$ columns
 - Arranged to have \mathbf{I}_m on the left (or on the right).
 - This simplifies conversion to **G**.

• Get **G** from **H**.

$$\mathbf{G} = \begin{bmatrix} \mathbf{P}_{k \times (n-k)} \mid \mathbf{I}_{k} \end{bmatrix} \longleftrightarrow \mathbf{H} = \begin{bmatrix} \mathbf{I}_{n-k} \mid -\mathbf{P}^{T} \end{bmatrix}$$

 Note that the size of the identity matrices in **G** and **H** can be different.

