Review: Channel Encoder and Decoder

Review: Linear Block Codes

- $k=$ number of bits in each data block.
- There are 2^{k} possibilities for the k-bit data block.
- $n=$ number of bits in each codeword.
- There are 2^{k} valid codewords.
- One for each possible data block.

Review: Linear Block Codes

- Given a list of codewords for a code \mathcal{C}, we can determine whether \mathcal{C} is linear by
- Definition: if $\underline{\mathbf{x}}^{(1)}$ and $\underline{\mathbf{x}}^{(2)} \in \mathcal{C}$, then $\underline{\mathbf{x}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)} \in \mathcal{C}$
- Shortcut:
- First check that \mathcal{C} must contain $\underline{\mathbf{0}}$
- Check the definition but only check the non-zero codewords.
- Codewords can be generated by a generator matrix
- $\underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}=\sum_{i=1}^{k} b_{i} \underline{\mathbf{g}}^{(i)}$ where $\underline{\mathbf{g}}^{(i)}$ is the $i^{\text {th }}$ row of \mathbf{G}

Review: Single-parity-check code

- $\underline{\mathbf{x}}=\left[\begin{array}{|l|}\underline{\mathbf{b}} \quad ; \sum_{\text {parity bit }}^{k} b_{j} \\ \hline\end{array}\right.$
- An example of linear block code.
- Use even parity
- $\mathbf{G}=\left[\mathbf{I}_{k \times k} ; \underline{\mathbf{1}}^{T}\right]$
- Can detect any odd number of bit error.

Review: Linear Block Codes

$$
\begin{aligned}
& \text { Code structure } \\
& \left.\begin{array}{rlllll}
\underline{\mathbf{x}}=\left[\begin{array}{lllll}
p_{1} & d_{1} & p_{2} & d_{2} & p_{3}
\end{array} d_{3}\right. & d_{4}
\end{array}\right] \\
& \text { where } \\
& p_{1}= \\
& \\
& p_{2}=d_{1} \oplus d_{2} \oplus d_{2} \oplus d_{4} \oplus d_{4} \\
& \\
& \\
& p_{3}=d_{2} \oplus d_{3} \oplus d_{4}
\end{aligned} .
$$

Codebook

$\underline{\mathbf{d}}$							$\underline{\mathbf{x}}$			
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	1	0	1	0	1
0	0	1	0	0	0	1	0	1	1	0
0	0	1	1	1	0	0	0	0	1	1
0	1	0	0	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0	1
0	1	1	0	1	0	1	1	0	1	0
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	1	1	1	0	0	0	0
1	0	0	1	0	1	0	0	1	0	1
1	0	1	0	1	1	0	0	1	1	0
1	0	1	1	0	1	1	0	0	1	1
1	1	0	0	0	1	1	1	1	0	0
1	1	0	1	1	1	0	1	0	0	1
1	1	1	0	0	1	0	1	0	1	0
1	1	1	1	1	1	1	1	1	1	1

$$
\left.\mathbf{G}=\left[\begin{array}{ccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\
p_{1} & d_{1} & p_{2} & d_{2} & p_{3} & d_{3} & d_{4} \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]\right)
$$

$$
\begin{gathered}
\begin{array}{lllllll}
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} \\
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\
p_{1} & d_{1} & p_{2} & d_{2} & p_{3} & d_{3} & d_{4} \\
\mathbf{H}=\left[\begin{array}{llllllll}
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] \\
\text { Parity Check Matrix }
\end{array}
\end{gathered}
$$

Review: Even Parity

- A binary vector (or a collection of 1 s and 0 s) has even parity if and only if the number of 1 s in there is even.
- Suppose we are given the values of all the bits except one bit.
- We can force the vector to have even parity by setting the value of the remaining bit to be the sum of the other bits.

Single-parity-check code
[101110_]

Review: Linear Block Codes

- The code structure is built into each codeword at the encoder (transmitter) via the generator matrix
- Each codeword is created by $\underline{\mathbf{x}}=\underline{\mathbf{d} G}$.
- The code structure is checked at the decoder (receiver) via the parity check matrix.
- A valid codeword must satisfy $\underline{\mathbf{x}} \mathbf{H}^{T}=\underline{\mathbf{0}}$.

Review: Linear Block Codes

$\left.\mathbf{G}=\left[\begin{array}{cccccccccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\ p_{1} & d_{1} & p_{2} & d_{2} & p_{3} & d_{3} & d_{4} \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right] \quad \begin{array}{llllllll}y_{1} \\ x_{1} & y_{2} & y_{3} & y_{4} & y_{4} & y_{5} & y_{6} & y_{7} \\ p_{1} & x_{3} & x_{5} & x_{0} & x_{1} & x_{7} \\ p_{1} & p_{2} & d_{2} & p_{3} & d_{3} & d_{4} \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$

- The "identity-matrix" columns in \mathbf{G} corresponds to positions of the message (data) bits in each codeword.
- Ex. For this code, codeword $\underline{\mathbf{x}}=\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array} 110\right]$ corresponds to message $\underline{\mathbf{b}}=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$.
- The "identity-matrix" columns in \mathbf{H} corresponds to positions of the parity (check) bits in each codeword.

Review: Hamming Code Recipe

Here,

$$
\left.\begin{array}{rl}
\begin{array}{rl}
m & =3 \\
n & =2^{3}-1 \\
& =7 \\
k & =4
\end{array} \quad \mathbf{H}=\left[\begin{array}{ccc:cccc}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & \mathbf{I}_{2} \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]
\end{array}\right]
$$

- Start with the parity-check matrix
- m rows
- $m=n-k$
- Columns are all possible nonzero m-bit vectors
- $n=2^{m}-1$ columns
- Arranged to have \mathbf{I}_{m} on the left (or on the right).
- This simplifies conversion to \mathbf{G}.
- Get \mathbf{G} from \mathbf{H}.

$$
\mathbf{G}=\left[\begin{array}{l:l}
\mathbf{P}_{k \times(n-k)} & \mathbf{I}_{k}
\end{array}\right] \Longleftrightarrow \mathbf{H}=\left[\begin{array}{l:l}
\mathbf{I}_{n-k} & -\mathbf{P}^{T}
\end{array}\right]
$$

- Note that the size of the identity matrices in \mathbf{G} and \mathbf{H} can be different.

Review: Linear Block Code

